EDITORIAL COMMENT

Myectomy Versus Alcohol Septal Ablation
Experience Remains Key*

Jeffrey B. Geske, MD, Bernard J. Gersh, MB, ChB, DPhil

In this issue of JACC: Cardiovascular Interventions, Steggerda et al. (1) present a single-center experience comparing alcohol septal ablation (ASA) and septal myectomy for the treatment of symptomatic patients with hypertrophic obstructive cardiomyopathy. They present results of 102 myectomy and 161 ASA patients studied over a mean of 9.1 and 5.1 years, respectively. They note higher periprocedural complication rates with myectomy, driven primarily by a high rate of repeat thoracotomy (most commonly for hemothorax and residual gradient). There were no differences between the procedures in annual mortality (including sudden cardiac death), symptomatic status, or, somewhat surprisingly, permanent pacemaker implantation.

Myectomy is a well-established, effective surgical technique with decades of experience in its use (2). Since its introduction in 1995 (3), use of ASA has increased precipitously given a percutaneous approach, such that there are estimates of >5,000 procedures performed over the course of less than a decade, more than the number of septal myectomies performed in the past half century (4). Olivotto et al. (5) previously outlined the impracticality of a theoretical randomized, controlled trial comparing ASA and myectomy, which would necessitate screening of 34,000 patients for enrollment and randomization of 600 patients in each arm. Therefore, existing published data comparing the 2 techniques is limited to registries and meta-analyses. There remains substantial controversy regarding choice of procedure (4,6). Current American College of Cardiology Foundation/American Heart Association guidelines recommend septal myectomy at experienced centers as the first consideration for septal reduction therapy (Class IIa, Level of Evidence: B) and ASA as an alternative in selected patients with contraindication to myectomy or who favor ASA over myectomy following informed discussion (Class IIb, Level of Evidence: B) (6).

The present study highlights the paramount importance of procedural experience. Myectomy was performed at a rate of 3.5 operations/year (102/29 years), whereas ASA was pursued at a rate >16 procedures/year (161/10 years). Put in this context, the post-myectomy perioperative mortality rate of 2%, the high rate of perioperative complications (28%) including permanent pacemaker implantation in 9%, and lengthy post-myectomy hospital stay (mean 9 days) may indeed relate to operative experience as opposed to inherent procedural limitations. Current guidelines stress the need for extensive procedural experience for both myectomy and ASA, defined as >20 procedures per individual operator or a program with >50 procedures, mortality rates <1%, complication rates <3%, and documented success at symptom relief (7). In contrast to the current series, we performed 232 myectomies at our institution in 2013 alone. We previously reported our operative results, with a myectomy mortality rate <1%, a pacemaker implantation rate of 2.4%, and hospital length of stay a median of 6 days, comparable to the ASA experience reported here (8). Similar results have been reported at the Cleveland Clinic (9) and other high-volume myectomy centers (10). Although the anatomic site of septal myectomy frequently results in postoperative left bundle branch block (11), in the absence of preexisting right bundle branch block, it is difficult to explain the high rate of permanent pacemaker implantation in the present study.

*Editorials published in JACC: Cardiovascular Interventions reflect the views of the authors and do not necessarily represent the views of JACC: Cardiovascular Interventions or the American College of Cardiology.

From the Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota. Both authors have reported that they have no relationships relevant to the contents of this paper to disclose.
Subjectively assessed symptomatic status post-procedurally was similar between the myectomy and ASA groups, consistent with known meta-analysis data (12), although interestingly objective quantification of cardiopulmonary exercise capacity has shown more improvement with myectomy compared with ASA in previous evaluation (13). Whether this relates to less long-term gradient reduction with ASA (a finding again demonstrated herein) is unknown.

Arrhythmogenic risk post-ablation remains an area of uncertainty. On the basis of MRI (14) and necropsy studies (15), it is clear that ASA is associated with scarring not seen in myectomy. As the authors appropriately cite, there have been reports of higher rates of implantable cardiac defibrillator discharge after ASA (16). In the current evaluation, increased arrhythmogenesis was not seen, a finding echoed in other recent studies (17). However, given the differences in follow-up duration, further longitudinal assessment is warranted.

Where do we go from here? Myectomy has a proven track record of success, yet it is clear that the percutaneous appeal of ASA remains attractive to both physicians and patients. In experienced centers of excellence, ASA may be a reasonable alternative to myectomy in selected patients. A comparison of age- and sex-matched patients undergoing ASA and myectomy at our center revealed no significant difference in survival free of death or need for additional septal reduction therapy; however, there was greater symptom relief in young patients with myectomy and more pacemaker implantation with ASA (18). Assessment of procedural success and risk must be individualized on the basis of both the patient and institutional experience. The present investigation has significant potential for skewing of results on the basis of the discrepant rates of myectomy and ASA. A thorough investigation of adverse procedural outcomes and septal reduction therapy comparative effectiveness remains of immense clinical value, a point emphasized in the guidelines (7). However, it remains clear that procedural success is closely linked to institutional experience, and septal reduction therapies should be limited to referral centers of excellence.

REPRINT REQUESTS AND CORRESPONDENCE: Dr. Bernard J. Gersh, Division of Cardiovascular Diseases, Mayo Clinic, Gonda 05, 200 First Street SW, Rochester, Minnesota 55905. E-mail: gersh.bernard@mayo.edu.

REFERENCES

KEY WORDS: alcohol septal ablation, hypertrophic obstructive cardiomyopathy, long-term outcome, myectomy.