EDITORIAL COMMENT

In Vivo Assessment of Local Intravascular Hemodynamics and Arterial Morphology to Investigate Vascular Outcomes

A Growing Field Coming of Age*

Peter H. Stone, MD, Charles L. Feldman, ScD
Boston, Massachusetts

The arterial system, and in particular, the endothelium, is a complex “organ” capable of sensing its environment and adjusting itself to maintain optimal structure and function so that adequate blood flow and nutrients are delivered to organs and distal tissues. The normal arterial wall is capable of undergoing major reshaping as evidenced by arterial adaptations during physiological processes. One of the principal signals to which the endothelium is exposed, and, consequently, that influences endothelial structure and function, is the endothelial shear stress (ESS), the frictional drag of blood flowing tangentially across the endothelial surface of the arterial wall. An abnormal change in the ESS on the wall activates feedback mechanisms that return these ESS forces to “normal” values. If ESS is altered from its physiological state, the arterial diameter responds by changing in such a way as to restore ESS to the physiological range. In normal arteries, high ESS elicits an expansive remodeling response, whereas low ESS elicits a constrictive one. Much of the flow-mediated physiological adaptation is genetically influenced (1).

See pages 1181 and 1190

In pathological vascular conditions, the process of sensing local hemodynamic and morphological characteristics and responding to them is typically more complex and may even become maladaptive. The pathobiological consequences associated with alterations of ESS in animals and patients predisposed to atherosclerosis have been studied extensively in vitro and ex vivo for many decades (2–7). Low and oscillatory ESS conditions lead to quiescence in the vascular wall, and high ESS is associated with platelet activation and adhesion (5,7). Shear stress is typically low in areas such as the inner aspect of curvatures, downstream from an obstruction, and at the outer waist of a bifurcation; ESS is generally high on the outer portion of curves and at the throat of an obstruction.

The nature of ESS patterns can be very complex and can change dramatically as vascular anatomy, arterial remodeling responses, and pathobiology change (8). As an atherosclerotic lesion develops and progresses, for example, new local hemodynamic environments are created that, in turn, influence new pathobiological consequences. A vicious cycle may be created whereby progressive changes in plaque and wall morphology and, consequently, local flow patterns lead to further increases in local atherosclerosis.

Until recently, the local intravascular characteristics of anatomy and ESS could only be investigated in vitro or ex vivo (3,9,10). New methodologies now exist that enable ESS and vascular remodeling patterns to be characterized in vivo and suggest uses that may ultimately be suitable for clinical purposes (11–14).

Applications for Measurement of Local ESS and Vascular Morphology

Predict development and progression of coronary artery disease. One of the major applications of this new ability to characterize local ESS and arterial remodeling patterns in vivo has been to risk-stratify individual coronary plaques, that is, to identify areas where coronary artery plaque is likely to develop, progress, and potentially form high-risk thin-cap fibroatheromas that are prone to rupture (8,14–19). Areas of low ESS uniquely and predictably manifest coronary plaque and there is a direct relationship between the magnitude of local low ESS and the magnitude of local lipid accumulation, inflammation, and plaque formation (19). Endothelial shear stress is the driving pathobiological mechanism responsible for much of plaque formation and progression and for remodeling behavior. The hemodynamic factors responsible for frank plaque rupture are under ongoing investigation. Serial studies in large animal models and pilot studies in man suggest that these approaches may be able to predict areas that will become responsible for causing a new clinical event (8,15,18,19), and a large-scale trial in humans is underway (PREDICTION [Prediction of Progression of Coronary Artery Disease and Clinical Outcome Using Vascular Profiling of Shear Stress and Wall Morphology] trial).

Evaluate conformability of intracoronary stent design. Recent studies have employed detailed computational fluid dynamics to characterize local ESS patterns associated with stent strut design to minimize local areas of disturbed flow and low ESS, as those areas are associated with atheroprobe and procoagulant flow conditions that also retard endothelializa-
in a much more precise manner than the simple indexes of the local geometric consequences of the different stent designs versus the metallic scaffold. Calculation of local ESS patterns associated with the bioresorbable scaffold are indeed more vasculoprotective and enable detailed calculation of local ESS (23). The investigators conclude that the bioresorbable scaffold was more effective in preserving the more physiologic local blood flow patterns from the stented region and measured arterial curvature and angulation before, during, and immediately after stent deployment using quantitative coronary angiography techniques and special software to assess local arterial geometry. Curvature was defined as the infinitesimal rate of change in the tangent vector at each point of the lumen centerline, and angulation was defined as the angle in degrees that the tip of an intracoronary guideline hinging movement of the artery between systole and diastole constitutes a major source of cerebral embolism. The intensely proatherosclerotic nature of local flow disturbances associated with the carotid bifurcation and the carotid bulb have been extensively demonstrated in ex vivo and in vitro studies (3,9). Recent innovative studies have used in vivo flow-sensitive 4-dimensional magnetic resonance imaging to characterize detailed carotid anatomy and blood flow in healthy individuals and patients with carotid atherosclerosis and have enabled detailed calculation of local ESS (23). Patterns of adversely disturbed local flow are readily evident by such studies, and areas with disturbed flow patterns correlate closely with the localization and severity of atherosclerosis. Similar analyses have been performed from magnetic resonance images of the thoracic and abdominal aorta (24,25). In vivo risk-stratification of individual plaques in the carotid artery or the aorta may be enormously valuable to identify which atherosclerotic areas are most in jeopardy of rapid enlargement, proclivity to form clot and subsequent thromboembolism, or to rupture.

Potential Future Applications of Assessing Local Hemodynamic Patterns

Assessment of high-risk plaque in carotid artery or the aorta. Atherosclerosis in the internal carotid artery constitutes a major source of cerebral embolism. The intensely proatherosclerotic nature of local flow disturbances associated with the carotid bifurcation and the carotid bulb have been extensively demonstrated in ex vivo and in vitro studies (3,9). Recent innovative studies have used in vivo flow-sensitive 4-dimensional magnetic resonance imaging to characterize detailed carotid anatomy and blood flow in healthy individuals and patients with carotid atherosclerosis and have enabled detailed calculation of local ESS (23). Patterns of adversely disturbed local flow are readily evident by such studies, and areas with disturbed flow patterns correlate closely with the localization and severity of atherosclerosis. Similar analyses have been performed from magnetic resonance images of the thoracic and abdominal aorta (24,25). In vivo risk-stratification of individual plaques in the carotid artery or the aorta may be enormously valuable to identify which atherosclerotic areas are most in jeopardy of rapid enlargement, proclivity to form clot and subsequent thromboembolism, or to rupture.

Noninvasive Assessment of Coronary Atherosclerosis Progression

Identification of areas of local coronary atherosclerosis development and progression has heretofore required invasive techniques of coronary angiography and intravascular ultrasound.

Assessment of neointimal response following elution of different drugs from stents. In this issue of *JACC: Cardiovascular Interventions*, Papafikis et al. (22) report another innovative use of understanding the local arterial hemodynamic environment. They compared the neointimal thickness response 6 months after implantation of either sirolimus- or paclitaxel-eluting stents to the response of bare-metal stents. They used the local ESS, derived from 3-dimensional reconstruction of the coronary artery stented area and computational fluid dynamics, as a provocative stimulus to gauge the efficacy of the antiproliferation medication. They observed that neointimal thickness was significantly lower following deployment of drug-eluting stents compared with bare-metal stents \((p < 0.001) \) and that maximum neointimal thickness was lower in sirolimus-eluting stents compared with paclitaxel-eluting stents \((p = 0.025) \). Local ESS was indeed an independent predictor of neointimal thickness. Only sirolimus elution was associated with attenuation of the neointimal thickness response to low ESS, whereas paclitaxel elution and bare-metal stents exhibited a similar relationship of local ESS to the magnitude of neointimal thickness. The investigators speculate that sirolimus elution, when compared with paclitaxel elution, may have incremental benefits by abrogating the adverse local response to low ESS, which could potentially amplify the neointimal response in certain lesions with high-risk geometry.

They speculate further that these differences in inhibition of neointimal formation are likely responsible for the differences in adverse clinical outcomes observed in large-scale clinical trials comparing the different drugs eluted.
New noninvasive techniques to acquire lumen and vascular dimensions in 3-dimensional space may be able to identify high-risk plaque and enable identification of adverse low ESS areas. There are promising early results using coronary computed tomographic angiography to accomplish these goals (26,27). If such techniques are effective and safe, as the resolution of computed tomography increases and the dose of required radiation exposure decreases, it may be possible to develop strategies of computed tomographic angiography to identify which patients are at risk for developing high-risk lesions on a trajectory toward plaque rupture.

Conclusions

The field of identifying the local ESS and anatomic vascular patterns to assess or predict vascular outcomes has evolved dramatically over the past few years. Although previous methodologies limited investigations to in vitro or ex vivo approaches, new methodologies allow in vivo investigations that can be performed with readily available equipment. Data acquisition necessary to calculate local ESS patterns and vascular morphology is routine, but post-processing of images and computational analyses of lumen and vascular structures are time-consuming and labor-intensive, such that they are not yet suitable for routine real-time clinical management. Methods continue to evolve at a very rapid pace, however, and the concept of risk-stratification of individual atherosclerotic plaques or individual vascular areas may soon become routine. It is likely that such individual plaque-based or artery-based approaches will dramatically enhance the precision and clinical benefit of our therapeutic strategies.

Reference:

Reprint requests and correspondence: Dr. Peter H. Stone, Cardiovascular Division, Brigham and Women’s Hospital, 75 Francis Street, Boston, Massachusetts 02115. E-mail: pstone@partners.org.